آثر پاتولین بر روی برخی از یاران‌های اسپرمی انسان
به‌عنوان پیوسته‌نشانی جانوری، سال نهم، شماره‌های دوم، زمستان ۹۵، دانشگاه آزاد اسلامی واحد دامغان

۱۰ زهرا سادات رسولی، ۲۹ سیده فاطمه سیدتی، ۳۳ میترا حیدری نصرآبادی، ۴۳ عبدالحسین شاهوردی

۱- گروه زیست شناسی و درمانی پاتولین، دانشگاه آزاد اسلامی، تهران، ایران
۲- گروه زیست شناسی و درمانی پاتولین، دانشگاه آزاد اسلامی، تهران، ایران
۳- گروه جنین شناسی، مرکز تحقیقات پزشکی تولیدنی، یوزه شکر، تهران، ایران

FSIADAT2003@yahoo.com

متن مقاله: 

تاریخ دریافت: ۱۳۹۵/۹/۲۵
تاریخ پذیرش: ۱۳۹۵/۱۲/۲۶

چکیده

پاتولین سی می از جمله‌های مایکوتکسکین‌ها که توسط چندین گونه از کیک‌ها به ویژه آسپرژیلوس، باپوسکالماس و پنیسپورم اکسیپاکسوم تولید می‌گردد. حضور پنیسپورم اکسیپاکسوم در قلب سبیت‌ها، دندان‌های آسیب‌ناپذیر و مصرف آب سبیت حلال از این محصولات موجب تأثیری است. پاتولین دارای اثرات ناهنجاری‌زایی در جین، جهش‌زایی، زننگی و سرطان‌زا است. این تحقیق سعی در بررسی اثرات ناهنجاری‌زایی و سرطان‌زا پاتولین در خلق اسلامی و تأثیر آن بر کاهش آسپرمی انسان نشان می‌دهد.

DNA پرستی سفید ۲۰۰۵۰/۲۵۰/۵۵/۵۰۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر تحقیق شد. در مطالعه حاضر ۴۰ نمونه مایع DNA به‌عنوان ساختنی داده شده بود که در فلز سیاست فلز، PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفید و PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفید و PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفید و PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفید و PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفید و PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفید و PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفید و PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفید و PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفید و PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفید و PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفید و PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفید و PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفید و PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفید و PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفید و PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفید و PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفید و PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفید و PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفید و PH مورفولوزی، زنده مایلی و فراغماسیون در اسپرم قبل و بعد از اثر پاتولین با ۵۰ میکروگرم در میلی‌لیتر باعث کاهش میزان DNA پرستی سفی

DNA

کلمات کلیدی: پاتولین، اسپرم، باروری، فراغماسیون

مقیده

حدود ۲۵ درصد ناباروری در زوجین به علت کیفیت پایین مایع سمن است. در معرض فرار گرفتن مردان با سبب و مواد شیمیایی می‌تواند بر باروری آنها تأثیرگذار باشد. یکی از این سبب‌ها پاتولین است. پاتولین یکی از مایکوتکسکین‌ها است که در میوه‌های کیک‌های شیرین، برخی از خصوصیات و محصولات حاصل از این سبب‌ها مثل آبی‌پو و کمیت‌های کافی می‌شود (۱).

این ماده توسط چندین گونه از کیک‌ها به خصوص (Penicillium)، (Aspergillus) آسپرژیلوس و باپوسکالماس (Byssochlamys) تولید می‌شود.
اهن پاتولین بل او بی‌رخی از...

زنوتکسیک نیز دارد و باعث آسیب به DNA می‌شود و همچنین خاصیت سرطان‌زایی آن در موسها و رنگ‌ها به اثبات رسیده است. افزایش می‌تواند از طریق پوست جذب شود.

برخی از مطالعات نشان داده‌اند که پاتولین باعث آسیب به ستار زنوتکسیک ممکن است با توانایی واکنش با گروه‌های سولفیدریل و اقلای آسیب اکسیداتیون مربوط باشد (19، 20). همچنین اثرات این سم روی بروز یکی و میزان هموسای لودو در رنگ‌ها نیز تأثیر پسند شده است (21، 22).

نامه‌ی جدیدی که موروزوی بوسلیه پاتولین در سلول‌های پستانداران نیز اثبات رسیده است (23، 24).

در مورد اثرات این سم بر انسان، اکثر مطالعاتی در دست نیستند. بر اساس بررسی‌های شیمیایی در این سم در سلول‌های آزمایشگاهی بر روی سلول‌های انسان بخصوص بر DNA اثر نیز ندارد.

گردد.

مواد و روش کار
نمونه مورد آزمایش: نمونه‌های معمول سمن افراد مراجعه کننده به مرکز درمان تابوای پویاها و شیمیایی در رسانه‌های نیا و پویای (هورنر) و سلول‌های (ROH) مورد بررسی قرار گرفت. بعد از زمان معمولاً شدگی (Liquefaction) WHO (2010) شمارش شدن و نمونه‌های بی تغییر 75 تا 110 میلیونی در میلی‌لیتر انتخاب شدند.

تنهی خلق‌گذاری: به منظور بررسی تأثیر پاتولین با خلق‌گذاری به ناحیه محلول استوک از پاتولین با خلق‌گذاری پت (Ham’sF10 ppm) مورد بررسی قرار گردید. این محلول استوک به طور سریالی با محیط گری در محلول استوک به مقدار 100 میلی‌لیتر Ham’sF10 ریخت شدن و به هر کنار 3/0/4، 3/0/5 و SE میکروگرم در میلی‌لیتر بسته شد. سپس نمونه‌ها به مدت

(27 درجه سانتی‌گراد اکنون با دندان. مراحل بعد
هر نمونه از نظر تکرار، زنده‌مانی، فرگنمتاسیون و DNA مورفولوژی و سرم بار مصنوعی با دندان. مراحل بعد
برای حذف 30 نمونه قبل و بعد از اضافه اکسید
(تش عثک پشتهای دس
ا٘داْ ٌشدیذ ٚ ٔمایؼٝ دادٜ ٞا تٝ كٛست
ٔغاِؼات آٔاسي تا اػتفادٜ اص آ٘اِیض ٚاسیا٘غ
: ٌشٚٞي وٝ
ٞا لثُ ٚ تؼذ اص اضافٝ وشدٖ غّظت
ٞا تٝ ٔذت
ٔشحّٝ تؼذ
- آٔیضي پاپاویکًلا ا٘ٛاع
ٕ٘ٛ٘ٝ لثُ ٚ تؼذ اص اضافٝ وشدٖ غّظت
ٞا تٝ وٕه سً٘
ٌشاد
، ص٘ذٜ
quick Dispertion) SCD
، ص٘ذٜ
Dispertion) SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی في DNA تخریب (Sperm Chromatin Disperation) SCD نسبت میزان زنده‌مانی اسپرم‌ها (segement length) رگی آمیزی برد طبق ویرتگولک اجرا در ریس‌های گری و استفاده در ریس‌های گری. مراحلی مورد بررسی قرار گرفت.

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی في DNA تخریب (Sperm Chromatin Disperation) SCD نسبت میزان زنده‌مانی اسپرم‌ها (segement length) رگی آمیزی برد طبق ویرتگولک اجرا در ریس‌های گری و استفاده در ریس‌های گری. مراحلی مورد بررسی قرار گرفت.

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی في DNA تخریب (Sperm Chromatin Disperation) SCD نسبت میزان زنده‌مانی اسپرم‌ها (segement length) رگی آمیزی برد طبق ویرتگولک اجرا در ریس‌های گری و استفاده در ریس‌های گری. مراحلی مورد بررسی قرار گرفت.

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی في DNA تخریب (Sperm Chromatin Disperation) SCD نسبت میزان زنده‌مانی اسپرم‌ها (segement length) رگی آمیزی برد طبق ویرتگولک اجرا در ریس‌های گری و استفاده در ریس‌های گری. مراحلی مورد بررسی قرار گرفت.

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی في DNA تخریب (Sperm Chromatin Disperation) SCD نسبت میزان زنده‌مانی اسپرم‌ها (segement length) رگی آمیزی برد طبق ویرتگولک اجرا در ریس‌های گری و استفاده در ریس‌های گری. مراحلی مورد بررسی قرار گرفت.

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی في DNA تخریب (Sperm Chromatin Disperation) SCD نسبت میزان زنده‌مانی اسپرم‌ها (segement length) رگی آمیزی برد طبق ویرتگولک اجرا در ریس‌های گری و استفاده در ریس‌های گری. مراحلی مورد بررسی قرار گرفت.

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی في DNA تخریب (Sperm Chromatin Disperation) SCD نسبت میزان زنده‌مانی اسپرم‌ها (segement length) رگی آمیزی برد طبق ویرتگولک اجرا در ریس‌های گری و استفاده در ریس‌های گری. مراحلی مورد بررسی قرار گرفت.

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی من میزان تخریب (Sperm Chromatin Disperation) SCD نسبت میزان زنده‌مانی اسپرم‌ها (segement length) رگی آمیزی برد طبق ویرتگولک اجرا در ریس‌های گری و استفاده در ریس‌های گری. مراحلی مورد بررسی قرار گرفت.

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی من میزان تخریب (Sperm Chromatin Disperation) SCD نسبت میزان زنده‌مانی اسپرم‌ها (segement length) رگی آمیزی برد طبق ویرتگولک اجرا در ریس‌های گری و استفاده در ریس‌های گری. مراحلی مورد بررسی قرار گرفت.

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی من میزان تخریب (Sperm Chromatin Disperation) SCD N

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی من میزان تخریب (Sperm Chromatin Disperation) SCD N

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی من میزان T

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی من میزان T

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی من میزان T

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی من میزان T

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی من میزان T

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی من میزان T

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی من میزان T

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی من میزان T

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی من میزان T

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی من میزان T

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی من میزان T

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی من میزان T

SCD
Laehay
یه
تخریب DNA
جهت بررسی ارایبی من میزان تخریب (Sperm Chromatin Disperation) SCD N
زندگی اسپرمها (Viability): میزان زندگی اسپرمها نیز به طور مشابه قبل و بعد از این که نمونه‌های سمن در معرض غلظت‌های مختلف پاپتونی قرار گرفتند در محیط آزمایشگاهی بررسی شد. در همه غلظت‌ها بعد از اضافه کردن سم پاپتونی به نمونه‌های سمن میزان زندگی اسپرمها کاملاً معنی‌داری نشان داد (p<0.05). این میزان در غلظت‌های 0/5 و 0/33 اختلاف بیشتری با گروه کنترل داشت (نمودار 2).

تخرب دنا (SCD): تخمین نهایی DNA تخمین نهایی در سه غلظت 0/5، 0/33 و 0/05 مورد ارزیابی قرار گرفت در هر غلظت عدد از تعداد 3 نمونه سمن مورد بررسی و سنجه قرار گرفت (n=3). در غلظت‌های 0/5 و 0/33 میزان تخمین نهایی با گروه کنترل داشت اختلاف معنی‌داری با غلظت‌های غلظت‌های 0/5 با کاهش میزان اسپرمها و 0/33 با کاهش تعداد اسپرمها در این ها انجام شد. در نتیجه Brainox در غلظت‌های 0/5 و 0/33 میزان اسپرمها با انواع دیگر در ها داشت (نمودار 3).

نمودار 1- مقایسه انواع حرکات اسپرم در غلظت‌های مختلف با گروه کنترل. A: حرکت به جلو و بعد تغییر جهت، B: حرکت به جلو، C: حرکت دردنا، D: مستقیم به سمت جلو، E: حرکت به جلو و بعد تعیین جهت. میانگین در نتیجه با افراد است
نمودار ۲- مقایسه وضعیت زندگی‌نامه اسپرم‌ها در غلظت‌های مختلف با گروه کنترل.

نمودار ۳- مقایسه وضعیت تخریب DNA در سه غلظت ۰/۰۲ و ۰/۰۵ نسبت به گروه کنترل هم‌طور که ملاحظه می‌شود در دو DNA غلظت ۰/۰۲ و ۰/۰۵ تخریب با گروه کنترل اختلاف معنی‌داری و در این دو غلظت درصد اسپرم‌های abnormal بیشتر است.
بحث
باتولین‌هایی از ماکروتکسیم‌ها است که به وسیله کیک‌های موجود در میووی‌های فاسد شده به‌خصوص سیب و آب‌میوهای حاصل از آنها تولید می‌شوند. از آنجا که این ترکیب سرطان‌زا، موتانیون و پارتوز است و باعث تعطیف سیستم ایمنی و عوارض گوارشی می‌شود می‌تواند روزانه DNA اسپرم نیز تأثیرگذار باشد [11].

افزایش میزان ناباروری در مردان امروزه مورد توجه قرار گرفته است. در سبایی از کارخانجات تولید آب سیب متاسفانه کنترل دقیقه میزان استاندارد این ماده در آب بسیار وجود ندارد. بنابراین مصرف زیاد این فراورده‌ها می‌تواند تحریب DNA و در نتیجه ایجاد اسپرم‌های غیرطبیعی و در نتیجه کاهش پاروی را در پی داشته باشد. میزان مجاز پاتولین در آب سیب تولید شده در کارخانجات 50 نانومتر در میلی لیتر (برگرفته استاندارد ملی ایران) و یا طبق WHO 50 نانومتر در میلی لیتر است.

معلوماً مقدار این ماده در بخش آب سیب‌های حاصل از کارخانجات ایران بیش از مقدار مجاز آن 7/15 و حتی 15/25 میکروگرم در لیتر تعیین شده است [1] و با حداقل 2 برایه مقدار مجاز آن است. بنابراین مصرف زیاد این آب میوهای متواند بر سلامت باروری افراد تاثیر سویو داشته باشد.

فعالیت باتولین به شکلی بسیار قوی با گروه‌های سولفیدریلی دارد. به همین علت می‌تواند بسیاری از آنزیم‌ها را متوقف کند. برخی مطالعات نشان داده‌اند که باتولین باعث آسیب به سنتز DNA می‌شود. این اثرات ویژه‌ای – ژنتوکسیک ممکن است با توانایی واکنش با گروه‌های سولفیدریل و آلفا سیسپینا مرتبط باشد [19، 13] با این وجود ناگوئن WHO به‌این ترتیب نرسیده است که باتولین خاصیت ژنتوکسیک دارد.


الف: اسپرم بی‌باتولین (اسپرم با فشات‌های DNA)

ب. اسپرم بدون ماده (اسپرم با ژنتوکسی)

ج. اسپرم بی‌باتولین (اسپرم با تقریبی است)

د. اسپرم با باتولین (اسپرم با طبیعی است)

شکل 1- فراغت‌زاکاریاس (DO) اسپرم با فشات‌های DNA
دانشگاه علوم پزشکی بابل، سال هفتم، شماره ۲، صفحات ۳۴-۴۰

۳ عبادی مناس، ق. حسن‌زاده، ش. نجفی، غ. پربروک، ک. نعمایی، پ. ۱۳۹۳ اثر بیربیری‌دانی روند انیسیام سایه‌داری و عملکرد تولید ملکری موش‌های کوچک نر و سایید آزمایشگاهی. فصلنامه طب تولیدمثل ایران، دوره پازدهم، شماره ۸، صفحات ۵۰-۵۱۰۰.


۱۱. بانی و درمان‌کننده‌ی ۲۶ (۳۱) هینازون و دیازیتون [۲۱] بر پارامترهای اسپرم مطالعات مختلفی صورت گرفته است. اما تاثیر پاتولین بر باروری تنا در رفت و موتورها بررسی شده است و مشخص شده که این سم باعث کاهش اسپرم [۲۴] و تاثیر بر روی سولهای گرانولوزا [۹] می‌شود. همچنین بر غشاء سلولی اثرات مستقیمی دارد. اما تاثیر مستقیم این سم بر روی سوله‌های اسپرم انسان در محیط آزمایشگاهی گزارشی در دسترس نیست. در این مقاله سعی شد تأثیر پاتولین بر پارامترهای اسپرم و به‌خصوص فراکونتاسیون اسپرم مورد بررسی قرار گیرد.

نتیجه‌گیری

تاریخ این مطالعه نشان داد که این سم می‌تواند باعث تخریب اسپرم شود و همچنین تحرک اسپرم و مقاوم زندگی اسپرم را کاهش می‌دهد. بنا بر این می‌تواند بر باروری مردان تأثیرگذار باشد.

تقدیر و تشکر

بدیع‌ساله از پژوهشکده محترم روانی، جهت در انتخاب قرار دادن نمونه‌ها و سرکار خانم دکتر افتخاری استاد برهم عین پژوهشکده کمال تشکر و قدردانی اعلام می‌گردد.

منابع

۱. حاج حسینی‌پاپایی، ا. پوری، ا. پوری، ا. رحمانی، ک. فرجی، پ. ۱۳۹۱. چکیده مقالات اولین همایش ملی بهداشت کشاورزی ۷-۸ آذر ماه دانشگاه علوم پزشکی تهران.

۲. جوز، س. غیبی، غ. پریک، غ. غیبرد. ۱۳۹۴. تاثیر سموم هینازون و دیازیتون بر پارامترهای اسپرم انسان در حالت In vivo. مجله علمی


نتیجه‌گیری

تاریخ این مطالعه نشان داد که این سم می‌تواند باعث تخریب اسپرم شود و همچنین تحرک اسپرم و مقاوم زندگی اسپرم را کاهش می‌دهد. بنا بر این می‌تواند بر باروری مردان تأثیرگذار باشد.

تقدیر و تشکر

بدیع‌ساله از پژوهشکده محترم روانی، جهت در انتخاب قرار دادن نمونه‌ها و سرکار خانم دکتر افتخاری استاد برهم عین پژوهشکده کمال تشکر و قدردانی اعلام می‌گردد.

منابع

۱. حاج حسینی‌پاپایی، ا. پوری، ا. پوری، ا. رحمانی، ک. فرجی، پ. ۱۳۹۱. چکیده مقالات اولین همایش ملی بهداشت کشاورزی ۷-۸ آذر ماه دانشگاه علوم پزشکی تهران.

۲. جوز، س. غیبی، غ. پریک، غ. غیبرد. ۱۳۹۴. تاثیر سموم هینازون و دیازیتون بر پارامترهای اسپرم انسان در حالت In vivo. مجله علمی


اثش پاتِٛیٗ تش سٚي تشخي اص