تاثیر سطوح مختلف نانوذرات اکسید روی بر آنزیم های استرس اکسیداتیودر ماهی کلمه (Rutilus rutilus caspicus)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه بیولوژی دریا، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

2 بخش شیلات، مرکز تحقیقات کشاورزی و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران

چکیده

امروزه استفاده بیش از حد نانوذرات اکسید روی (ZnO NPs) موجب نگرانی­هایی در ارتباط با خطرات احتمالی زیست محیطی ناشی از حضور این ذرات در اکوسیستم­های آبی شده است. لذا هدف این پژوهش، مطالعه اثر سمی نانوذره اکسید روی (02/0، 05/0 و 1/0 میلی­گرم بر لیتر) به روش ساکن بر آنزیم­های استرس اکسیداتیو در یک دوره 7 روزه بود. بعد از هموژنه کردن بافت مغز فعالیت آنزیم­های استرس اکسیداتیو مانند سوپر اکسید دسموتاز (SOD)، گلوتاتیون -S ترانسفراز (GST)، کاتالاز (CAT)،  گلوتاتیون (GSH) و مالون دی آلدیید (MDA) توسط روش­های بیوشیمیایی تعیین شد. فعالیت آنزیم­های آنتی­اکسیدانی SOD، CAT و GST در بافت مغز ماهی کلمه در اثر مواجهه با غلظت 1/0 میلی­گرم بر میلی­لیتر نانوذره روی در مقایسه با غلظت­های دیگر و کنترل به طور معنی­داری افزایش نشان داد (05/0p<). اما مقدار گلوتاتیون با افزایش دوز در معرض قرارگیری کاهش یافت. در میزان مالون دی آلدهید افزایش وابسته به دوز مشاهده گردید چنانکه بیشترین مقدار آن در غلظت 1/0 میلی­گرم بر میلی­لیتر از نانوذره (53/0 ± 5/4 نانومول بر گرم وزن تر) ثبت گردید. سمیت تحت کشنده نانوذرات منجر به القا تولید رادیکال­های آزاد واسترس اکسیداتیو در بافت مغز ماهی کلمه گردید. که افزایش فعالیت آنزیم­های آنتی­اکسیدانی بیانگر فعال شدن سیستم دفاع آنتی اکسیدانی جهت مهار رادیکال­های آزاد است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Subacute Toxicity Nano Zinc Oxide (ZnO NPs) on Oxidative Stress Enzymes of Roach (Rutilus rutilus caspicus)

نویسندگان [English]

  • K. Karimzadeh 1
  • A. Zahmatkesh 2
  • E. Sharifi 1
1 Department of Marine Biology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
2 Aquaculture Department, Gilan Agricultural and Natural Resources Research Center, AREEO, Rasht, Iran
چکیده [English]

Today, the excessive use of zinc oxide nanoparticles (ZnO NPs) has led to concerns about the potential environmental hazards caused by the presence of these particles in aquatic ecosystems. Therefore, the aim of this study was to investigate the toxic effects of zinc oxide nanoparticles (0.02, 0.05 and 0.1 mg/L) on the oxidative stress enzymes in brain tissue of roach during a period of 7 days. After homogenization of the brain tissue, the activity of oxidative stress enzymes such as superoxide dismutase (SOD), glutathione-S transferase (GST), catalase (CAT), glutathione (GSH) and malondialdehyde (MDA) was determined using biochemical methods. The SOD, CAT and GST activities were significantly increased by exposure to 0.1 mg/ml zinc nanoparticles compared with other concentrations in brain tissue of roach (P<0.05). However, the amount of glutathione decreased with increasing exposure dose. In amount of malondialdehyde dose-dependent manner was observed, since the maximum concentration was recorded at 0.1 mg/ml of nanoparticles (4.5 ± 5.3 nmol/g wet). The subacute toxicity of nanoparticles leads to the induction of free radical and oxidative stress in brain tissue of roach. The increase in the activity of antioxidant enzymes causes antioxidant defense system activation for scavenger in free radicals.

کلیدواژه‌ها [English]

  • Rutilus rutilus caspicus
  • Oxidative stress
  • Zinc Oxide Nanoparticles
  • Brain tissue
. هدایتی، ع.ا.، جهانبخشی، ع.، مرادزاده، م.، جوادی موسوی، م.، 1393. تاثیر سمیت تحت کشنده نانواکسید روی (ZnO NPs) بر شاخص­های خونی ماهی کلمه (Rutilus rutilus caspicus). مجله بیوتکنولوژی و فیزیولوژی آبزیان، سال دوم،شماره اول، صفحات 53-41.

2. Adamcakova-Dodd  A.,  Stebounova  L.V., Kim  J.S.,  Vorrink  S.U.,  Ault  A.P., O’Shaughnessy  P.T., Grassian  V.H.,  Thorne  P.S.,  2014.  Toxicity assessment of zinc oxide nanoparticles using subacute and sub-chronic murine inhalation models.  Particle and Fibre Toxicology, 11: 15–22.

3. Aebi H., 1984.  Catalase in vitro. Methods in Enzymology, 105: 121-126.

4.  Afifi M., Abdelazim A.M., 2015.  Ameliorative effect of zinc oxide and silver nanoparticles on antioxidant system in the brain of diabetic rats. Asian Pacific Journal Tropical Biomedicine, 5 (10): 832–834.

5. Alkaladi A., Afifi M., Mosleh Y., AbuZinada O., 2014.  Histopathological effects of zinc oxide nanoparticles on the liver and gills of Oreochromis niloticus  protective effect of vitamins C and E. Journal of Pure  Applied Microbiology, 8 (6): 4549–4558.

6. Alkaladi A., El-Deen N., Afifi M., Abu Zinadah O., 2015.  Hematological and biochemical investigations on the effect of vitamin E and C on Oreochromis niloticus exposed to zinc oxide nanoparticles. Saudian Journal of Biological Science, (22): 556–563.

7. Asghar  M.S.,  Qureshi  N.A.,  Jabeen  F.,  Khan  M.S.,  Shakeel  M.,  Noureen  A.,  2015.  Toxicity of zinc nanoparticles in fish: a critical review. Journal of Biology and Enviromental Science, 7 (1): 431–439.
8. Arstikaitis J., Gagne F., Cyr D.G., 2014.Exposure of fathead minnows to municipal wastewater effluent affects intracellular signaling pathways in the liver. Comparative Biochemistry Physiology, part(C) Toxicolgy Pharmacology 64: 1-10.

9. Bradford M.M., 1976.  A rapid and sensitive method for the quantitation of microgram quantities of protein  utilizing the principle of protein-dye binding.  Analytical Biochemisry, 72: 248-54.

10. Chen  Z.,  Meng  H.,  Xing  G.,  Chen  C.,  Zhao  Y.,  Jia  G.,  Wan  L.,  2006.  Acute toxicological effects of copper nanoparticles in vivo.  Toxicology Letters, 163(2): 109-120.

11. Connolly  M.,  Fernández  M.,  Conde  E.,  Torren T. F.,  Navas  J.M.,  Fernández-Cruz  M.L.,  2016. Tissue distribution   of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Science of the Total Environment, 551-552: 334-343.

12. Habig W.H., Pabst M.J., Jakoby W.B., 1974.  Glutathione S-transferases: the first enzymatic step in mercapturic   acid formation.  Journal of Biological Chemistry, 249 (22): 7130-7139.

13. Heinlaan M., Ivask A., Blinova I., Dubourguier H.C., Kahru A., 2008.Toxicity of nano sized and bulk ZnO, CuO   and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71(7): 1308‐1316. 

14. Hoet P.H.M., Hohlfeld I.B., Salata O.V., 2004.  Nanoparticles known and unknown health risks. Journal of Nanobiotechnology, 2(12): 1-15.

15. Isani  G.,  Andreani  G.,  Monari  M.,  Dalla Libera  L.,  Carpenè  E.,  2000. Biochemical changes in gilthead sea   bream white muscle during post-larval growth. Basic Applied Myology, 10 (6): 285-290.

16. Linhua H., Lei C., 2012.  Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicology and Environmental Safety, 80: 103-110.

17. Limon-Pacheco J., Gonsebatt M.E., 2009. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutation Research, 674 (1-2): 137-147

18. Nordberg J., Arner E., 2001. Reactive oxygen species, antioxidants, and the mammalianthioredoxin system. Free Radical Biology and Medicine,31(11): 1287-1312

 19. Ma H., Williams P.L., Diamond S.A., 2013.  Ecotoxicity of manufactured ZnO nanoparticles a review. Environmental Pollution, 172: 76–85.

20. Masella R., Benedetto R.D., Vari R., 2005. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. Journal of Nutritional Biochemistry, 16 (10): 577-586.

21. Nel  A.E.,  Ma dler  L.,  Velegol  D.,  Xia  T.,  Hoek  E.M.,  Somasundaran  P., 2009. Understanding biophysicochemical interactions at the nano-bio interface.  Natural Material, 8 (7): 543-557.

22. Oliveira Ribeiro C.A., Belger L., Pelletier E., Rouleau C., 2002.  Histopathological evidence of inorganic mercury andmethylmercury toxicity in the artic charr (Salvelinus alpinus). Environmental Research, 90(3): 217–225.

23. Pandey  S.,  Parvez  S.,  Sayeedl  I.,  Haque  R.,  Bin-Hafeez  B.,  Raisuddin  S., 2003.  Biomarkers of oxidative stress: via comparative study of river Yamuna fish Wallago attu (Bl. & Schn.).  Science Total Environment, 309: 105-115.

 24. Paresh C.R., Hongtao Y., Peter P.F., 2009.  Toxicity and environmental risks of nanomaterials: challenges and future needs. Journal of Environmental Science and Health Part C Environmental Carcinogenesis & Ecotoxicology Reviews, 27 (1): 1-35.
25. Puerto  M.,  Prieto  A.I.,  Pichardo  S.,  Moreno  I.,  Jos  A.,  Moyano  R.,  Camean  A.M.,  2009.  Effects of dietary N-acetylcysteine (NAC) on the oxidative stress induced in tilapia (Oreochromis niloticus) exposed to a microcystin-producing cyanobacterial water bloom. Environmental Toxicology and Chemistry, 28: 1679-1686.

26. Saddick S., Afifi M., Abu Zinada O. A., 2017.  Effect of Zinc nanoparticles on oxidative stress-related genes and antioxidant enzymes activity in the brain of Oreochromis niloticus and Tilapia zillii. Saudian Journal of.  Biological Science, 24(7): 1672-1678.

27. Satoh K., 1978. Serum lipid peroxidation in cerebrovascular disorders determined by a new colorimetric method. Clinica Chimcal Acta, 90:37–43.

28. Tietze F., 1969.  Enzymic method for quantitative determination of nanogram amounts of total and oxidized   glutathione: Applications to mammalian blood and other tissues.  Analytical Biochemistry, 27: 502-22.

29.  Tiwari S., Pelz-Stelinskik K., Mann S.R., Stelinski L.L., 2011.  Glutathione transferase and cytochrome P450   (general oxidase) activity levels in Candidatus Liberibacter asiaticus infected and uninfected Asian citrus psyllid (Hemiptera: Psyllidae).  Annals of the Entomological Society of America, 104: 297-305.

30.   Trevisan  R.,  Flesch  S.,  Mattos  J.,  Milani  M.R.,  Bainy  A.C.,  Dafre  A.L.,  2014.  Zinc causes acute impairment of glutathione metabolism followed by coordinated antioxidant defenses amplification in gills of brown mussels Perna pernaComparative Biochemistry and Physiology, C 159: 22-30.

31. Van der Oost R., Beyer J., Vermeulen N.P., 2003.  Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology Pharmacology, 13: 57-149.

32. Varadarajan R., Sankar H.S., Jose J., Philip B., 2014.  Sublethal effects of phenolic compounds on biochemical, histological and ion regulatory parameters in a tropical teleost fish Oreochromis mossambicus (Peters).  International Journal of Scientific and Research Publication, 4(3): 2250-3153.

33. Winterbourn C., Hawkins R., Brian M, Carrell R., 1975.  The estimation of red cell superoxide dismutase activity.  Journal of Laboratory Clinical Medicine, 85: 337.

34. Xiong  D.W.,  Fang  T.,  Yu  L.P.,  Sima  X.F.,  Zhu  W.T.,  2011.  Effects of nano-scale TiO2, ZnO and their bulk counter parts on zebra fish: acute toxicity, oxidative stress and oxidative damage. Science of the Total Environment, 409: 1444-1452.