تاثیر سه هفته بی‌تمرینی متعاقب شش هفته تمرین اینتروال فزآینده بر سطوح HIF-1a و آپوپتوز برونش و برونشیول بافت ریه رت‌های نر ویستار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، داشنگاه خوارزمی، تهران، ایران

2 گروه فیزیولوژی ورزش، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه مازندران، بابلسر، ایران

3 گروه علوم پایه، دانشکده دامپزشکی، دانشگاه تبریز، تبریز، ایران

چکیده

تمرین اینتروال فزآینده با افزایش التهاب همراه است. از این رو هدف از مطالعه حاضر  بررسی تاثیر بی تمرینی کوتاه مدت متعاقب 6 هفته تمرین اینتروال فزآینده بر سطوح فاکتور القایی هیپوکسی و آپوپتوز برونش و برونشیول بافت ریه رت­های نر ویستار بود. برای این منظور 18 سر رت نر نژاد ویستار سالم (4 هفته­ای با میانگین وزنی 9 ± 72 گرم) به دو گروه تجربی (12 سر) و کنترل (6 سر) تقسیم شدند، پس از 6 هفته تمرین اینتروال فزآینده که بصورت چهار جلسه در هفته در مرحله آماده سازی و پنج جلسه در طول اجرای برنامه پژوهش انجام شد. برنامه تمرین تناوبی فزآینده با سرعت 25 متر بر دقیقه (VO2max 66 درصد) شروع و با سرعت 70 متر بر دقیقه (VO2max 185 درصد) در پایان هفته ششم اتمام یافت. تعداد شش سر از رت­های گروه تجربی به گروه بی­تمرین(6 سر) انتقال یافته و به مدت سه هفته در شرایط بی­تمرینی نگهداری شدند. جهت اندازه­گیری میزان HIF-1α و آپوپتوز برونش و برونشیول، در پایان هفته نهم نمونه بافت ریه خارج و مورد سنجش قرار گرفت. برای تحلیل داده­ها از روش آماری آنالیز واریانس یک طرفه در سطح معنی­داری (05/0≥ p) استفاده شد. یافته­ها نشان داد که در شرایط بی­تمرینی علی­رغم افزایش معنی­داری در میزان HIF-1α و آپوپتوز برونش و برونشیول ریه (05/0≥p ) در دوره تمرین اینتروال فزآینده، کاهش معنی­داری (05/0≥p ) در میزان HIF-1α، آپوپتوز برونش و برونشیول بافت ریه مشاهده شد. به نظر می­رسد انجام تمرینات اینتروال فزآینده با افزایش میزان HIF-1α و آپوپتوز برونش و برونشیول ریه همراه است که در بی­تمرینی از مقدار آنها کاسته می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of a Short Period of Detraining Following the Six Weeks of High Intensity Interval Training on HIF-1α Levels and Bronchus and Bronchioles Apoptosis in Lung Tissue in Male Wistar Rats

نویسندگان [English]

  • Saber Niazi 1
  • Shadmehr Mirdar 2
  • Reza Bazzar 2
  • Gholamreza Hamidian 3
1 Department of Sports Physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran
2 Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Mazandaran, Babolsar, Iran
3 Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
چکیده [English]

This study aimed evaluate the effect of short-term detraining following 6 weeks of high-intensity interval training on HIF-1α, bronchus, and bronchioles apoptosis levels on lung tissue in male Wistar rats. For this purpose, 18 healthy Wistar male rats (4 weeks with a mean weight of 72±9.9 g) were divided into experimental (n=12) and control (n=6) groups. After 6 weeks of high-intensity interval training, 6 rats the experimental group was transferred to the detraining group (n=6) and kept in detrain condition for three weeks. To measure of HIF-1α and bronchus and bronchioles apoptosis, a lung tissue sample was taken and measured at the end of the ninth week. One-way analysis of variance at the significance level (P≤0.05) was used to analyze the data. The results showed that despite the significant increase in HIF-1α and bronchial apoptosis and pulmonary bronchioles (P≤0.05) during high-intensity training, there was a significant decrease (P ≤ 0.05) in HIF-1α, bronchial apoptosis and bronchioles of lung tissue were observed. It seems to be done by the increase of the amount of HIF-1α and apoptosis in multiple cell lung bronchi and bronchioles, but the detraining period will decrease.
.

کلیدواژه‌ها [English]

  • Hypoxia inducible factor-1α
  • Apoptosis
  • High Intensity Interval Training
  • Lung tissue
  • Detraining
  • Bronchus
  • Bronchioles
  1. Ahmadi A., Sheikholeslami-Vatani D., Ghaeeni S., Baazm M. 2021. The Effects of Different Training Modalities on Monocarboxylate Transporters Mct1 and Mct4, Hypoxia Inducible Factor-1α (Hif-1α), and Pgc-1α Gene Expression in Rat Skeletal Muscles. Molecular Biology Reports, 48(3): 2153-2161.
  2. Bucchieri F., Puddicombe S.M., Lordan J.L. 2002. Asthmatic Bronchial Epithelium Is More Susceptible to Oxidant-Induced Apoptosis. American journal of respiratory cell and molecular biology, 27(2): 179-185.
  3. Dayan F., Mazure N.M., Brahimi-Horn MC., Pouysségur J. 2008. A Dialogue between the Hypoxia-Inducible Factor and the Tumor Microenvironment. Cancer Microenvironment, 1(1): 53-68.
  4. Dong Z., Wang J..Z., Yu F., Venkatachalam M.A. 2003. Apoptosis-Resistance of Hypoxic Cells: Multiple Factors Involved and a Role for Iap-2. The American Journal of Pathology, 163(2): 663-671.
  5. Dong Z., Wang JZ., Yu F.,Venkatachalam MA. 2003. Apoptosis-Resistance of Hypoxic Cells: Multiple Factors Involved and a Role for Iap-2. The American journal of pathology. 163(2): 663-671.
  6. Greijer A..Van der Wall E. 2004. The Role of Hypoxia Inducible Factor 1 (Hif-1) in Hypoxia Induced Apoptosis. Journal of Clinical Pathology, 57(10): 1009-1014.
  7. Groenman F., Rutter M., Caniggia I., Tibboel D., Post 2007. Hypoxia-Inducible Factors in the First Trimester Human Lung. Journal of Histochemistry and Cytochemistry, 55(4):355-363.
  8. He X., Shi X., Yuan H., Xu H., Li Y., Zou Z. 2012. Propofol Attenuates Hypoxia-Induced Apoptosis in Alveolar Epithelial Type Ii Cells through Down-Regulating Hypoxia-Inducible Factor-1α. Injury, 43(3): 279-283.
  9. Hu C.J., Wang L.Y., Chodosh L.A., Keith B., Simon M.C. 2003. Differential Roles of Hypoxia-Inducible Factor 1α (Hif-1α) and Hif-2α in Hypoxic Gene Regulation. Molecular and Cellular Biology, 23(24): 9361-9374.
  10. Ke Q., Costa M. 2006. Hypoxia-Inducible Factor-1 (Hif-1). Molecular pharmacology. 70(5): 1469-1480.
  11. Ke Q.,Costa M. 2006. Hypoxia-Inducible Factor-1 (Hif-1). Molecular pharmacology. 70(5): 1469-1480.
  12. Kuiper E.J.,Van Nieuwenhoven F.A., De Smet M.D. 2008. The Angio-Fibrotic Switch of Vegf and Ctgf in Proliferative Diabetic Retinopathy. PloS One, 3(7): e2675.
  13. Kuwano K. 2007. Epithelial Cell Apoptosis and Lung Remodeling. Cell and Molecular Immunology, 4(6): 419-429.
  14. Larsson L., Ansved T. 1985. Effects of Long‐Term Physical Training and Detraining on Enzyme Histochemical and Functional Skeletal Muscle Characteristics in Man. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 8(8): 714-722.
  15. Lee S.D., Kuo W.W., Lin J.A. 2007. Effects of Long-Term Intermittent Hypoxia on Mitochondrial and Fas Death Receptor Dependent Apoptotic Pathways in Rat Hearts. International journal of Cardiology, 116(3): 348-356.
  16. Lundby C., Gassmann M., Pilegaard H. 2006. Regular Endurance Training Reduces the Exercise Induced Hif-1α and Hif-2α Mrna Expression in Human Skeletal Muscle in Normoxic Conditions. European Journal of Applied Physiology, 96(4): 363-369.
  17. McClintock D.S., Santore M.T., Lee V.Y. 2002. Bcl-2 Family Members and Functional Electron Transport Chain Regulate Oxygen Deprivation-Induced Cell Death. Molecular and Cellular Biology, 22(1): 94-104.
  18. Mirdar S., Kazemzadeh Y., Arabzadeh E., Shirvani H., Hamidian G. 2019. The Effects of Tapering with and without Ethanolic Extract of Nigella Sativa on Hypoxia Inducible Factor-1α and Exercise-Induced Bronchial Changes. Journal of Military Medicine, 21(2): 131-141.
  19. Mujika I. 2010. Intense Training: The Key to Optimal Performance before and During the Taper. Scandinavian Journal of Medicine and Science in Sports, 20(s2): 24-31.
  20. Nikseresht M..Sadeghifard N..Agha-Alinejad .Ebrahim K. 2014. Inflammatory Markers and Adipocytokine Responses to Exercise Training and Detraining in Men Who Are Obese. The Journal of Strength & Conditioning Research, 28(12): 3399-3410.
  21. Papacosta E., Gleeson M. 2013. Effects of Intensified Training and Taper on Immune Function. Revista Brasileira de Educação Física e Esporte, 27(1): 159-176.
  22. Piret J.P., Mottet D., Raes M., Michiels C. 2002. Is Hif-1α a Pro-or an Anti-Apoptotic Protein?. Biochemical Pharmacology. 64(5): 889-892.
  23. Ringseis R., Eder K., Mooren FC., Krüger K. 2015. Metabolic Signals and Innate Immune Activation in Obesity and Exercise. Exercise Immunology Review. 21(2): 132-145.
  24. Roels B., Millet GP., Marcoux C., Coste O., Bentley DJ., Candau RB. 2005. Effects of Hypoxic Interval Training on Cycling Performance. Medicine and Science in Sports and Exercise. 37(1): 138-146.
  25. Saikumar P., Dong Z., Patel Y. 1998. Role of Hypoxia-Induced Bax Translocation and Cytochrome C Release in Reoxygenation Injury. 17(26): 3401-3415.
  26. Saikumar P., Dong Z., Patel Y. 1998. Role of Hypoxia-Induced Bax Translocation and Cytochrome C Release in Reoxygenation Injury. Oncogene, 17(26): 3401-3415.
  27. Scholz CC.,Taylor CT. 2013. Targeting the Hif Pathway in Inflammation and Immunity. Current opinion in pharmacology. 13(4): 646-653.
  28. Schutte B., Ramaekers F.C. 2000. Molecular Switches That Govern the Balance between Proliferation and Apoptosis. Progress in Cell Cycle Research, 2000: 207-217.
  29. Semenza GL. 2012. Hypoxia-Inducible Factors in Physiology and Medicine. Cell, 148(3): 399-408.
  30. Syahrastani S., Argantos A., Farma SA. 2020. Comparison of Serum Hif-1α Levels in Swimming Athletes before and after Hypoxic Non-Hypoxic Exercise. Eksakta: Berkala Ilmiah Bidang MIPA, 21(1): 36-39.
  31. Tian X., Zhou N., Yuan J. 2020. Heat Shock Transcription Factor 1 Regulates Exercise‐Induced Myocardial Angiogenesis after Pressure Overload Via Hif‐1α/Vegf Pathway. Journal of cellular and molecular medicine. 24(3): 2178-2188.
  32. Wang Z., Yu K., Hu Y. 2020. Schisantherin a Induces Cell Apoptosis through Ros/Jnk Signaling Pathway in Human Gastric Cancer Cells. Biochemical Pharmacology, 173: 113673.
  33. Yeh C.H., Cho W., So E.C. 2011. Propofol Inhibits Lipopolysaccharide-Induced Lung Epithelial Cell Injury by Reducing Hypoxia-Inducible Factor-1α Expression. British Journal of Anaesthesia, 106(4): 590-599.