اثرات ضدگلیوبلاستومای نانومیسل‌کورکومین همراه با ارلوتینیب در سلول‌های گلیوبلاستومای انسانی U87

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زیست شناسی، واحد دامغان، دانشگاه آزاد اسلامی، دامغان، ایران

2 مرکز تحقیقات بیوشیمی و تغذیه در بیماری های متابولیک، دانشگاه علوم پزشکی کاشان، کاشان، ایران

چکیده

گلیوبلاستوما (GBM) یکی از مهمترین نئوپلاسم‌های مغزی است و با مقاومت دارویی بالا همراه است. مکانیسم‌های مختلف سلولی و مولکولی، از جمله آپوپتوز، آنژیوژنز، اتوفاژی، مسیرهای NF-κB و Wnt، نقش مهمی در پیشرفت GBM ایفا می‌کنند. ما در این مطالعه، اثر کورکومین و نانومیسل‌کورکومین همراه با ارلوتینیب را برای سرکوب GBM در شرایط آزمایشگاهی بررسی کردیم. این سرکوب با تأثیر بر مسیرهای سیگنالینگ NF-kB و Wnt، مهار آنژیوژنز و القای اتوفاژی و آپوپتوز انجام می‌شود. کورکومین و نانومیسل‌کورکومین (50 میکرومولار) به تنهایی و همراه با ارلوتینیب (50 میکرومولار) در سلولهای گلیوبلاستوما U87 بررسی شد. بیان مسیرهای سیگنالینگ Wnt و NF-kB، آپوپتوز، آنژیوژنز، ژن‌ها و پروتئین‌های مرتبط با اتوفاژی توسط qRT-PCR و وسترن بلات بررسی شد. در مقایسه با گروه کنترل، تمام تیمارها از زیستایی سلولهای گلیوبلاستومای U87 کاسته‌اند. علاوه بر این، پروتئین‌های مرتبط با آنژیوژنز، به عنوان مثال، Cox-2، VEGF، HIF-1α و bFGF، به طرز چشمگیری کاهش یافته‌اند. همه تیمارها پروتئین‌های مرتبط با اتوفاژی و آپوپتوز، یعنی Bax، Beclin 1، کاسپاز 8، Bcl-2، LC3-II و LC3-I را تنظیم کردند. Total NF κB (p65) و phospho NF. κB (p65) با هر تیمار در سطح پروتئین کاهش یافتند. بیان VEGF، cyclin D1، Twist، ZEB و ژن‌های مرتبط با مسیر Wnt نیز کاهش یافت. به طور کلی، این نتایج نشان داد که کورکومین و نانومیسل‌کورکومین به تنهایی یا در ترکیب با ارلوتینیب از طریق تنظیم یک سری مکانیسم‌ها مانند آپوپتوز، اتوفاژی، آنژیوژنز، مسیرهای سیگنالینگ Wnt و NF. κB‌، اثرات ضد GBM از خود نشان می‌دهند.

کلیدواژه‌ها


عنوان مقاله [English]

Anti-glioblastoma Effects of Nano-micelle Curcumin Plus Erlotinib

نویسندگان [English]

  • Ali Bagherian 1
  • Hamed Mirzaei 2
  • Nahid Masoudian 1
  • Bostan Roudi 1
1 Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
2 Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
چکیده [English]

Glioblastoma is one of the most dangerous types of brain cancer, with a high rate of therapy resistance. Apoptosis, angiogenesis, autophagy, NF-κB, and Wnt pathways are just a few of the molecular and cellular processes that play a role in Glioblastoma development. The effectiveness of curcumin and Nano-micell curcumin with Erlotinib to suppress Glioblastoma in vitro was investigated in this study.The suppression is carried out by affecting NF-κB and Wnt signaling pathways, angiogenesis inhibition, and autophagy and apoptosis induction. Curcumin and Nano-micelle Curcumin (50 μM) was investigated alone and with Erlotinib (50 μM) in the U87 glioblastoma cells. The expression of Wnt and NF-κB signaling pathways, apoptosis, angiogenesis, and autophagy-related genes and proteins were assessed by qRT-PCR and Western blot. Compared with the control group, all treatments declined the U87 glioblastoma cells viability. Furthermore, Angiogenesis-associated proteins, i.e., Cox-2, VEGF, HIF-1α & bFGF, were remarkably decreased. Each treatment regulated autophagy and apoptosis-associated proteins, i.e., Bax, Beclin 1, caspase 8, Bcl-2, LC3-II, and LC3-I. Total NF κB (p65) and phospho NF. κB (p65) declined by each treatment at protein levels. Expressions of VEGF, cyclin D1, Twist, ZEB, and Wnt pathway-associated genes were also decreased. In general, our findings demonstrated that curcumin and Nano-micelle Curcumin, either alone or in conjunction with Erlotinib, had anti-Glioblastoma effects via modulating a number of processes including apoptosis, autophagy, angiogenesis, Wnt, and NF. κB signaling pathways.
 

کلیدواژه‌ها [English]

  • Erlotinib
  • Curcumin
  • Nano-micelle Curcumin
  • Glioblastoma
  1. Altinoz, M.A., Korkmaz R. 2004. NF-kappaB, macrophage migration inhibitory factor and cyclooxygenase-inhibitions as likely mechanisms behind the acetaminophen- and NSAID-prevention of the ovarian cancer. Neoplasma, 51(4): 239-247.
  2. Bagherian A., Mardani R., Roudi B., Taghizadeh M., Banfshe H.R., Ghaderi A., Davoodvandi A., Shamollaghamsari S., Hamblin MR., Mirzaei H. 2020. Combination Therapy with Nanomicellar-Curcumin and Temozolomide for In Vitro Therapy of Glioblastoma Multiforme via Wnt Signaling Pathways. Journal of Molecular Neuroscience, 70(10): 1471-1483.
  3. Chiu Ch., Chang Y.,  Kuo K.,  Shen Y.,  Liu Ch., Yu Y., Cheng Ch.,  Lee K., Chen F.,  Hsu M.,  Kuo T., Ma J.,  Su J. 2016, NF-κB-driven suppression of FOXO3a contributes to EGFR mutation-independent gefitinib resistance. Proceedings of the National Academy of Sciences of the United States of America, 113(18): 2526-2535.
  4. Coghill A E., Phipps AI., Bavry A., Wactawski-Wende J., Lane S., LaCroix A., Newcomb P. 2012. The association between NSAID use and colorectal cancer mortality: results from the women’s health initiative. Cancer Epidemiology, Biomarkers and Prevention, 21(11): 1966-1973.
  5. Eimer S., Belaud-Rotureau M., Airiau K., Jeanneteau M., Laharanne E., Véron N., Vital A., Loiseau H., Merlio J., Belloc F. 2011. Autophagy inhibition cooperates with Erlotinib to induce glioblastoma cell death. Cancer Biology and Therapy, 11(12): 1017-1027.
  6. Eskilsson E., Røsland G.V., Solecki G., Wang Q., Harter P.N., Graziani G., Verhaak R.G.W, Winkler F., Bjerkvig R., Miletic H. 2018. EGFR heterogeneity and implications for therapeutic intervention in glioblastoma. Neuro-Oncology, 20(6): 743-752.
  7. Greten F.R., Eckmann L., Greten T.F., Park J.M., Li Zh., Egan L.J., Kagnoff M.F., Karin M. 2004, IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell, 118(3): 285-296.
  8. Han W., Pan H., Chen Y., Sun J., Wang Y., Li J., Ge W., Feng L., Lin X., Wang X., Wang X., Jin H. 2011. EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells. PLoS One, 6(6): e18691.
  9. Hesari A.R., Azizian M., Sheikhi A., Nesaei A., Sanaei S., Mahinparvar N., Derakhshani M., Hedayat P., Ghasemi F., Mirzaei H. 2019. Chemopreventive and therapeutic potential of curcumin in esophageal cancer: Current and future status. International Journal of Cancer, 144(6): 1215-1226.
  10. Karin M. 2006. Nuclear factor-kappaB in cancer development and progression. Nature, 441(7092): 431-6.
  11. Karpel-Massler G., Halatsch M.E. 2014. Erlotinib in Glioblastoma–A Current Clinical Perspective. Tumors of the Central Nervous System: Primary and Secondary, DOI: 10.5772/58296.
  12. Karpel-Massler G., Schmidt U., Unterberg A., Halatsch M. 2009. Therapeutic inhibition of the epidermal growth factor receptor in high-grade gliomas: where do we stand? Molecular Cancer Research, 7(7): 1000-1012.
  13. Kobayashi S., Boggon T.J., Dayaram T., Jänne P.A, Kocher O., Meyerson M., Johnson B.E., Eck M.J, Tenen D G, Halmos B. 2005. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. The New England Journal of Medicine, 352(8): 786-792.
  14. Lai H.W., Chien S.Y., Kuo S.J., Tseng L M., Lin H Y., Chi Ch W., Chen D.R. 2012. The Potential Utility of Curcumin in the Treatment of HER-2-Overexpressed Breast Cancer: An In Vitro and In Vivo Comparison Study with Herceptin. Evidence-Based Complementary and Alternative Medicine, 2012: 486568.
  15. Li L., Puliyappadamba V.T., Chakraborty S.,  Rehman A., Vemireddy V., Saha D., Souza R F ., Hatanpaa K J., Koduru P., Burma S., Boothman D A., Habib A.A. 2015. EGFR wild type antagonizes EGFRvIII-mediated activation of Met in glioblastoma. Oncogene, 34(1): 129-134.
  16. Li X., Fan Z. 2010. The epidermal growth factor receptor antibody cetuximab induces autophagy in cancer cells by downregulating HIF-1alpha and Bcl-2 and activating the beclin 1/hVps34 complex. Cancer Research, 70(14): 5942-5952.
  17. Liu X., Chong Y., Tu Y., Liu N., Yue Ch., Qi Zh., Liu H., Yao Y., Liu H., Gao Sh., Niu M., Yu R. 2016. CRM1/XPO1 is associated with clinical outcome in glioma and represents a therapeutic target by perturbing multiple core pathways. Journal of Hematology and Oncology, 9(1): 108.
  18. Liu X., Chen X., Shi L., Shan Q., Cao Q., Yue Ch., Li H., Li Sh., Wang J., Gao Sh., Niu M., Yu R. 2019. The third-generation EGFR inhibitor AZD9291 overcomes primary resistance by continuously blocking ERK signaling in glioblastoma. Journal of Experimental and Clinical Cancer Research, 38(1): 219.
  19. Mardani R., Hamblin M.R., Taghizadeh M., Banafshe HR., Nejati M., Mokhtari M., Borran S., Davoodvandi A., Khan H., Jaafari MR., Mirzaei H. 2020. Nanomicellar-curcumin exerts its therapeutic effects via affecting angiogenesis, apoptosis, and T cells in a mouse model of melanoma lung metastasis. Pathology - Research and Practice, 216(9): 153082.
  20. Matkar S., Sharma P., Gao Sh., Gurung B., Katona B W., Liao J., Muhammad A B., Kong X.C.H., Wang L., Jin G., Dang Ch, Hua X. 2015. An Epigenetic Pathway Regulates Sensitivity of Breast Cancer Cells to HER2 Inhibition via FOXO/c-Myc Axis. Cancer Cell, 28(4): 472-485.
  21. Nduom E.K., Wei J., Yaghi N.K., Huang N., Kong L.Y., Gabrusiewicz K., Ling X., Heimberger A.B. 2016. PD-L1 expression and prognostic impact in glioblastoma. Neuro-Oncology, 18(2): 195-205.
  22. Padua D., Massagué J. 2009. Roles of TGFβ in metastasis. Cell Research, 19(1): 89-102.
  23. Palumbo S., Tini P., Toscano M., Allavena G., Angeletti F., Manai F., Miracco C., Comincini S., Pirtoli L. 2014. Combined EGFR and autophagy modulation impairs cell migration and enhances radiosensitivity in human glioblastoma cells. Journal of Cellular Physiology, 229(11): 1863-1873.
  24. Prados M D., Byron S A., Tran N L., Phillips J L., Molinaro N M., Ligon K L., Wen P Y., Kuhn J., Trent J.M. 2015. Toward precision medicine in glioblastoma: the promise and the challenges. Neuro-Oncology, 17(8): 1051-1063.
  25. Sakuma Y., Yamazaki Y., Nakamura Y., Yoshihara M., Matsukuma Sh., Koizume Sh., Miyagi Y. 2012. NF-κB signaling is activated and confers resistance to apoptosis in three-dimensionally cultured EGFR-mutant lung adenocarcinoma cells. Biochemical and Biophysical Research Communications, 423(4): 667-671.
  26. Scaltriti, M., Baselga J. 2006. The epidermal growth factor receptor pathway: a model for targeted therapy. Clinical Cancer Research, 12(18): 5268-5272.
  27. Shabaninejad Z., Pourhanifeh M.H., Movahedpour A., Mottaghi R., Nickdasti A., Mortezapour E., Shafiee A., Hajighadimi S., Moradizarmehri S., Sadeghian M., Mousavi S.M., Mirzaei H. 2020. Therapeutic potentials of curcumin in the treatment of glioblstoma. European Journal of Medicinal Chemistry, 188: 112040.
  28. Shostak, K. and A. Chariot, 2015. EGFR and NF-κB: partners in cancer. Trends in Molecular Medicine: Cell Press, 21(6): 385-393.
  29. Sos M.L., Koker M., Weir B.A., Heynck S., Rabinovsky R., Zander T., Kashkar H., Pao W., Meyerson M., Thomas R.K. 2009. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Research, 69(8): 3256-3261.
  30. Suda K., Tomizawa K., Fujii M., Murakami H., Osada H., Maehara Y., Yatabe Y., Sekido Y., Mitsudomi T. 2011. Epithelial to mesenchymal transition in an epidermal growth factor receptor-mutant lung cancer cell line with acquired resistance to Erlotinib. Journal of Thoracic Oncology, 6(7): 1152-1161.
  31. Thomson S., Buck E., Petti F., Griffin G., Brown E., Ramnarine N., Iwata K.K., Gibson N., Haley J.D. 2005. Epithelial to mesenchymal transition is a determinant of sensitivity of non–small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Research, 65(20): 9455-9462.
  32. Venkiteswaran S., Hsu H.C., Yang P., Thomas T., Thomas T.J. 2014. curcumin interferes with HER-2 signaling in a redox-dependent manner in SK-BR-3 human breast cancer cells. Journal of Human Nutrition and Food Science, 2: 1-8.
  33. Vivanco I., Robins H.I., Rohle D., Campos C., Grommes C.H., Nghiemphu Ph L., Kubek S., Oldrini B., Chheda M G., Mellinghoff I.K. 2012. Differential sensitivity of glioma- versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discovery, 2(5): 458-471.
  34. Wang Zh., Du T., Dong X., Li Zh., Wu G., Zhang R. 2016. Autophagy inhibition facilitates erlotinib cytotoxicity in lung cancer cells through modulation of endoplasmic reticulum stress. International Journal of Oncology, 48(6): 2558-2566.
  35. Wells, A. (1999), EGF receptor. The International Journal of Biochemistry & Cell Biology, 31(6): 637-643.
  36. Westover D., Zugazagoitia J., Cho B.C., Lovly C.M., Paz-Ares L. 2018. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Annals of Oncology, 29(suppl-1): i10-i19.
  37. Yue X., Lan FM., Yang W., Yang Y., Han L., Zhang A., Liu J., Zeng H., Tao Jiang, Pu P., Kang Ch S.H. 2010. Interruption of β-catenin suppresses the EGFR pathway by blocking multiple oncogenic targets in human glioma cells. Brain Research, 1366: 27-37.