بررسی روابط فیلوژنی گونه گیش دم زرد (Atule mate) در مناطق شمالی خلیج فارس و دریای عمان با استفاده از ژن سیتوکروم اکسیداز I

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دریایی، دانشکده منابع طبیعی و محیط زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 عضو وابسته دانشگاه گیلان، پژوهشکده حوضه آبی دریای خزر، رشت، ایران

چکیده

آنالیز ژنتیکی جمعیت‌های مختلف ماهیان جهت حفظ تنوع زیستی و افزایش اطلاعات در مورد بقای گونه ها و یافتن عوامل تهدید کننده و یا کمک کننده در حفظ جمعیت‌ها مهم و ضروری می­باشد. لذا هدف از این مطالعه تعیین روابط فیلوژنتیکی و خویشاوندی گونه گیش دم زرد (Atule mate) (Cuvier, 1833) در مناطق شمالی خلیج فارس و دریای عمان به وسیله توالی­یابی ژن سیتوکروم اکسیداز I ­(COI) میتوکندریایی می­باشد. 90 قطعه ماهی گیش دم زرد، از مناطق صیادی بندر بوشهر، بندر عباس و بندر چابهار، جمع آوری گردید و جهت انجام مطالعات مولکولی،DNA  ژنومی به روش استات آمونیم استخراج شده و کمیت و کیفیتDNA  بوسیله روش اسپکتروفوتومتری و الکتروفورز ژل اگارز 1 درصد تعیین شد. واکنش زنجیره­ای پلیمراز (PCR) با استفاده از یک جفت پرایمر ژن سیتوکروم اکسیداز  I انجام گردید. پس از الکتروفورز محصول PCR روی ژل آگارز 5/1درصد، قطعه bp650 ناحیه کنترل میتوکندریایی تعیین توالی شد. جهت بررسی روابط فیلوژنی با استفاده از نرم افزار CLUSTAL W، توالی‌های ژن COI میتوکندریایی هم ردیف و پس از مقایسه آنها با توالی‌های منتخب بانک ژن، ترسیم درخت فیلوژنی با روشهای متفاوت (Maximum Likelihood،  Maximum Parsimony و (Bayesian در مقابل برون گونه (Esox Lucius) انجام شد. نتایج نشان داد که تمامی نمونه­های بندر عباس و بندر بوشهر و 3 نمونه از بندر چابهار همگی در یک شاخه قرار گرفته و مابقی نمونه های بندر چابهار با دارا بودن فاصله ژنتیکی قدری بیشتر، بر روی شاخه مجزایی قرار داشته و با بوت استراپ بالا رابطه خواهری با هم نشان دادند و این دو شاخه با فاصله تکاملی زیاد از برون گونه قرار گرفتند. می­توان نتیجه گرفت که توالی­یابی ژن سیتوکروم اکسیدازI  روشی مناسب و قابل اعتماد در بررسی روابط فیلوژنتیکی گونه گیش دم زرد بوده و اطلاعات مفیدی جهت مدیریت و حفاظت این گونه با ارزش فراهم می­نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Phylogenetic Relationship of Yellowtail Scad (Atule mate) in the Persian Gulf and Oman Sea Using Cytochrome Oxidase I Gene

نویسندگان [English]

  • Mahzad Shakouri 1
  • Pargol Ghavam Mostafavi 1
  • Mohammad Pourkazemi 2
  • Seyyed Mohammadreza Fatemi 2
1 Department of Marine Science ,Faculty Of Natural Resources and Environment , Islamic Azad University, Science and Research Branch, Tehran, Iran
2 Affiliated member of University of Guilan, the Caspian Sea Water Basin Institute, Rasht, Iran
چکیده [English]

Genetic analysis of fish populations is essential for conserving biodiversity and increasing knowledge about the survival of species, and finding the factors threatening or contributing to the survival of these populations. The present study is aimed at investigating phylogenetic relationship of Yellowtail Scad in the northern Persian Gulf and Oman Sea by sequencing mitochondrial Cytochrome Oxidase I gene. Ninety yellow tail Scad have been collected from Bandar Abbas, Bushehr, and Chabahar port. Genomic DNA was extracted using Ammonium acetate method. After electrophoresis on 1% agarose gel, Cytochrome Oxidase I (COI) gene was amplified by Polymerase Chain Reaction (PCR), using pair of primers. After sequencing of PCR product, the phylogenetic tree was drawn by MEGA7 software with different methods (Maximum Likelihood, Maximum Parsimony, and Bayesian) using (Esox lucius) as an extraspecific group. All samples from Bandar Abbas, Bushehr, and three samples from Chabahar port were located in the same clade. Chabahar sample with a little more distance was located in separate clade and due to high supportive degree (bootstrap) showed sister group relationship. Moreover, these two clades were located with more evolutionary distance from extraspecific group. Consequently, COI gene sequencing was an appropriate and reliable method for phylogenetic relationship of Yellowtail Scad, providing useful information about protection and management of this valuable species.
 

کلیدواژه‌ها [English]

  • phylogeny
  • Yellowtail Scad
  • COI
  • polymerase chain reaction
  • Persian Gulf and Oman Sea
  1. 1.Adams, J. 2008. DNA sequencing technologies. Nature Education. 1(1):10-18.

    2.Allam M., Marie Z.A., 2021. Phylogenetic and genetic diversity of some carangid species from the Egyptian Red Sea using divergent domain D11 of 28S rRNA gene. Egyptian Journal of Aquatic Biology & Fisheries, 25(1):61–73.

    3.Bakker F.T., Culham A., Gomez Martinez R., Carvalho J., Compton J., Dawtrey R., Gibby M., 2000. Patterns of nucleotide substitution in angiosperm cpDNA trnL (UAA)–trnF (GAA) regions. Molecular biology and Evolution, 17(8):1146-1155.

    4.Bingpeng X., Heshan L., Zhilan Z., Chunguang W., Yanguo, W., Jianjun, W., 2018. DNA barcoding for identification of fish species in the Taiwan Strait. PLoS ONE, 13(6):1-16.

    5.Briolay J., Galtier R.M., Brito M., Bouvet Y., 1998. Molecular phylogeny of Cyprinidae inferred from Cytochrome b DNA sequences. Molecular Phylogenetics and Evolution, 9(1):100–108.

    6.Carpenter K.E., Harrison P., Hodgs G., Alsaffar A., Ahazeem S.H., 1997b. The corals and reef Fishes of Kuwait, 1nd Edition, Institute for Scientific research, Kuwait,166p.

    1. Damerau M., Freese M., Hanel R., 2018. Multi-gene Phylogeny of Jacks and Pompanos (Carangidae), Including Placement of Monotypic Vadigo Campogramma glaycos. Journal of Fish Biology, 92(1):190–202.
    2. Dettai A., Adamowizc S.J., Allcock L., Arango  C.P., Barnes D.K.A., Barratt I., Chenuil  A., Couloux A., Cruaud C., David B., Denis F., Denys G., Díaz  A., Eléaume M., Féral J.P., Froger A., 2011. DNA barcoding and molecular systematics of the benthic and demersal organisms of the CEAMARC survey. Polar Science, 5(2): 298–312.
    3. Douzery E.J.P., Pridgeon A.M., Kores P., Linder H.P., Kurzwell H., Chase M.W. 1999. Molecular Phylogenetics of disease (Orchidaceae) a contribution from Nuclear Ribosomal ITS Sequences. American Journal of Botany, 86(6): 887–899.
    4. FAO, 1981. Conservation of the Genetic Resource of fish. Problem and Recommendations. FAO Fisheries Technical Paper, Rome, 50 p.
    5. Fischer W., Bianchi G., 1984. FAO species identification sheets for fishery purposes. Western Indian Ocean; (Fishing Area 51). Prepared and printed with the support of the Danish International Development Agency, Rome, 304 pp.
    6. Frey M., Vermeij G.J., 2008. Molecular phylogenies and historical biogeography of a circumtropical group of gastropods implications for regional diversity patterns in the marine tropics. Molecular Phylogenetics and Evolution, 48(3):1067-1086.
    7. Gharibkhani M., 2014. Genetic analysis of pike-perch, Sander lucioperca L., populations revealed by microsatellite DNA markers in Iran. Caspian Journal of Environmental Sciences, 12(1): 99-108.
    8. Habib M., Lakra W.S., Mohindra V., Khare P., Barman A.S., Singh A., Khan A.A., 2011. Evaluation of Cytochrome b mtDNA sequences in genetic diversity studies of Channa marulius (Channidae: Perciformes). Molecular Biology Reports, 38(1): 841-846.
    9. Hebert P.D., Cywinska A., Ball S.L., Waard J.R., 2003. Biological identifications through DNA barcodes Proceedings of the Royal Society B. Biological Sciences, 270 (1512): 313- 321.
    10. Hernández I., Narváez-Barandica I., Acero-Pizarro., Acero-Pzarro A., 2018. Genetic variation and genetic structure of Caranx hippos (Teleostei: Carangidae) in the Colombian Caribbean. Revista de Biologia Tropical, 66(1):122-135.
    11. Ibanez A.L., Cowx I.G., O'Higgins P. 2007. Geometric morphometric analysis of fish scales for identifying genera, species and local populations within the Mugilidae. Canadian Journal of Fisheries and Aquatic Science, 64:1091-1100.
    12. Jaafar T.N.A., Taylor M.I., Mohd Nor S.A., de Bruyn M., Carvalho GR., 2017. DNA Barcoding Reveals Cryptic Diversity within Commercially Exploited IndoMalay Carangidae (Teleosteii: Perciformes). PLoS ONE, 7(11): 1-16.
    13. Jamaludin N., Mohd-Arshad W., Zainal Abidin D. 2020. Phylogeography of the Japanese scad, Decapterus maruadsi (Teleostei; Carangidae) across the Central Indo-West Pacific: evidence of strong regional structure and cryptic diversity, Mitochondrial DNA Part A, 31(7): 298-310.
    14. Kumar S., Stecher G., Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7): 1870–1874.
    15. Lakra W.S., Verma M.S., Goswami M.,Lal K., Mohindra V., Punia P. 2011. DNA barcoding Indian marine fishes, Molecular Ecology Resource, 11(2):60-71.
    16. Li M., Li Y., Chen Z., 2016. Description of the mitochondrial genome of yellowtail scad Atule mate (Perciformes: Carangidae). DNA Mapping Sequencing, and Analysis, 27(3): 2186-7.
    17. Li Z., Li M., Xu., S., Liu L., Chen Z., Zou K. 2020. Complete Mitogenomes of Three Carangidae (Perciformes) Fishes: Genome Description and Phylogenetic Considerations. International Journal of Molecular Science, 21(13): 2-16.
    18. Lin H. 2009. Evolution of the suborder Blennioidei: phylogeny and phylogeography of shallow water fish clade Electronic Theses and Dissertations, San Diego, 186 pp.
    19. Lucentini L., Caporali, S., Palomba A., Lancioni H., Panara F. 2006. A comparison of conservative DNA extract ion methods from fins and scales of freshwater fish: A useful tool for conservation genetics. Conservation Genetics,7(6):592-613.
    20. Mayr E., Ashlock P.D., 1990. Principle of Systematic Zoology, 2nd Edition McGraw-Hill College press. New York, 428p.
    21. Na-Nakorn U., Sukmanomon M., Nakajima N., Taniguchi W., Kamonrat S., Poompuang T., Nguyen., 2006. MtDNA diversity of the critically endangered Mekong giant catfish (Pangasianodon gigas Chevey, 1913) and closely related species: implications for conservation, Animal Conservation, 9(4): 483–494.
    22. Nelson J.S., 2006. Fishes of the world. John and Sons Inc. 4th Edition, New Jersey, 601 pp.
    23. Nylander J., 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, 3pp.
    24. Page RD. TreeView: an application to display phylogenetic trees on personal computers., 2001. Computer Applications in the Biosciences, 12(4): 357-358.
    25. Picoult-Newberg L., Ideker TE., Pohl MG., Taylor SL., Donaldson MA., Nickerson DA., Boyce-Jacino M., 1999. Mining SNPs from EST databases. Genome Research, 9(2):167-174.
    26. Rodriguez C.R., Cho E.J, Keogh M.C., Moore C.L., Greenleaf A.L., Buratowski S., 2000. the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II. Molecular and Cellular Biology, 20(1):104-12.
    27. Rodriguez F., Oliver J.L., Marin A., Medina JR. 2009. The general stochastic model of nucleotide substitution, Journal of Theoretical Biology, 142(4): 485-501.
    28. Ronquist F., Huelsenbeck J.P. 2009. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12): 1572-1574.
    29. Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J.C., Guirao-Rico S., Librado P., Ramos-Onsins S.E., Sánchez-Gracia A. 2017. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Datasets. Molecular Biology and Evolution, 34(12): 3299-3302.
    30. Sanger F., Nicklen N., Coulson A.R., 1977. DNA sequencing with chain-terminating inhibitors. Biochemistry, 74(12): 5463-5467.
    31. Sayers EW., Barrett T., Benson DA., 2011. Database resources of the national center for biotechnology information. Nucleic Acids Research, 39(2): 38-51.
    32. Sedigh zadeh Z., Vousoghi GH., Valinasab T., Fatemi M., 1386. A review of the Morphology of Otoliths in Some Commercial Pelagic Fish of the Persian Gulf. Journal of Veterinary Medicine, 3(1): 1-10.
    33. Swofford D., 2003. PAUP*: phylogenetic analysis using parsimony (* and other methods). Laboratory of Molecular Systematics Smithsonian Institution, Sinauer Associates, Sunderland, 130 pp.
    34. Templonuevo R. M. Alcantara S., Juanico C. S. Yambot A., 2018. DNA barcoding of two commercially important fish families (Carangidae and Lutjanidae) collected from Cuyo, Palawan, Philippines. International Journal of Agricultural Technology, 14(7): 2051-2066.
    35. Thompson J.D., Higgins D.G., Gibson T. J., 1997. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 11(22): 4673-4680.
    36. Thu P.T., Linh N.M., Quan N.V. Chien, P.V., Ly D.H. Hiep L.B.H. 2019. DNA barcoding for identification of some fish species (Carangidae) in Vietnam coastal area. Journal of Marine Science and Technology, 19(4): 527-536.
    37. Torres S.K.M., Santos B.S. 2019. Species Identification Among Morphologically-Similar Caranx species. Turkish Journal of Fisheries and Aquatic Sciences, 20(2): 159-169.
    38. Valinassab T. 2013. List of fishes of the Persian Gulf, Oman Sea and Caspian Sea. 1th Edition, Mowj-e-sabz Publisher, Tehran, 280 pp.
    39. Ward R.D., Zemlak T., Innes B.H., Last P.R., Hebert P. 2005. DNA barcoding Australia’s fish species. Philosophical Transcations of the royal society, 360)1462): 1847-1857.
    40. Zhang D.X., Hewitt G.M., 2003. Nuclear DNA analyses in genetic studies of populations: Practice, problems and prospects. Molecular Ecology, 12(3):563-584.