نوع مقاله : مقاله پژوهشی
نویسندگان
1 گروه زیست شناسی، واحد دامغان، دانشگاه آزاد اسلامی، دامغان، ایران
2 مرکز تحقیقات بیوشیمی و تغذیه در بیماری های متابولیک، دانشگاه علوم پزشکی کاشان، کاشان، ایران
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
Glioblastoma is one of the most dangerous types of brain cancer, with a high rate of therapy resistance. Apoptosis, angiogenesis, autophagy, NF-κB, and Wnt pathways are just a few of the molecular and cellular processes that play a role in Glioblastoma development. The effectiveness of curcumin and Nano-micell curcumin with Erlotinib to suppress Glioblastoma in vitro was investigated in this study.The suppression is carried out by affecting NF-κB and Wnt signaling pathways, angiogenesis inhibition, and autophagy and apoptosis induction. Curcumin and Nano-micelle Curcumin (50 μM) was investigated alone and with Erlotinib (50 μM) in the U87 glioblastoma cells. The expression of Wnt and NF-κB signaling pathways, apoptosis, angiogenesis, and autophagy-related genes and proteins were assessed by qRT-PCR and Western blot. Compared with the control group, all treatments declined the U87 glioblastoma cells viability. Furthermore, Angiogenesis-associated proteins, i.e., Cox-2, VEGF, HIF-1α & bFGF, were remarkably decreased. Each treatment regulated autophagy and apoptosis-associated proteins, i.e., Bax, Beclin 1, caspase 8, Bcl-2, LC3-II, and LC3-I. Total NF κB (p65) and phospho NF. κB (p65) declined by each treatment at protein levels. Expressions of VEGF, cyclin D1, Twist, ZEB, and Wnt pathway-associated genes were also decreased. In general, our findings demonstrated that curcumin and Nano-micelle Curcumin, either alone or in conjunction with Erlotinib, had anti-Glioblastoma effects via modulating a number of processes including apoptosis, autophagy, angiogenesis, Wnt, and NF. κB signaling pathways.
کلیدواژهها [English]